ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation

نویسندگان

  • Chang Zhou
  • Jinze Bai
  • Junshuai Song
  • Xiaofei Liu
  • Zhengchao Zhao
  • Xiusi Chen
  • Jun Gao
چکیده

A user can be represented as what he/she does along the history. A common way to deal with the user modeling problem is to manually extract all kinds of aggregated features over the heterogeneous behaviors, which may fail to fully represent the data itself due to limited human instinct. Recent works usually use RNN-based methods to give an overall embedding of a behavior sequence, which then could be exploited by the downstream applications. However, this can only preserve very limited information, or aggregated memories of a person. When a downstream application requires to facilitate the modeled user features, it may lose the integrity of the specific highly correlated behavior of the user, and introduce noises derived from unrelated behaviors. This paper proposes an attention based user behavior modeling framework called ATRank, which we mainly use for recommendation tasks. Heterogeneous user behaviors are considered in our model that we project all types of behaviors into multiple latent semantic spaces, where influence can be made among the behaviors via self-attention. Downstream applications then can use the user behavior vectors via vanilla attention. Experiments show that ATRank can achieve better performance and faster training process. We further explore ATRank to use one unified model to predict different types of user behaviors at the same time, showing a comparable performance with the highly optimized individual models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Uncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm

Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...

متن کامل

Developing a Recommendation Framework for Tourist by Mining Geo-tag Photos (Case Study Tehran District 6)

With the increasing popularity of sharing media on social networks and facilitating access to location technologies, such as Global Positioning System (GPS), people are more interested to share their own photos and videos. The world wide web users are no longer the sole consumer but they are producers of information also, hence a wealth of information are available on web 2.0 applications. The ...

متن کامل

Discovering Popular Clicks\' Pattern of Teen Users for Query Recommendation

Search engines are still the most important gates for information search in internet. In this regard, providing the best response in the shortest time possible to the user's request is still desired. Normally, search engines are designed for adults and few policies have been employed considering teen users. Teen users are more biased in clicking the results list than are adult users. This leads...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.06632  شماره 

صفحات  -

تاریخ انتشار 2017